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Maps Between Deformed and Ordinary
Gauge Fields
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In this paper, we introduce a map between the q-deformed gauge fields defined on
the GLq (N )-covariant quantum hyperplane and the ordinary gauge fields. Perturbative
analysis of the q-deformed QED at the classical level is presented and gauge fixing à la
BRST is discussed. Another star product defined on the hybrid (q, h)-plane is explicitly
constructed.
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1. INTRODUCTION

Motivated by the need to control the divergences which occur in quantum
electrodynamics, Snyder (1947a,b) proposed that one may use a noncommutative
structure of spacetime coordinates. Although its great success, this suggestion has
been swiftly forsaken. This is partly due to a growing development in the renormal-
ization program which captivated all the attention of the leading physicists. The
renormalization prescription solved the quantum inconsistencies without making
any ad hoc assumption on the spacetime structure. Thanks to the seminal paper of
Connes (1985) the interest in noncommutativity (Connes, 1994; Gracia-Bondı̀a
et al., 2000; Landi, 1997; Madore, 1999) has been revived. Natural candidates
for noncommutativity are provided by quantum groups (Aschieri and Castellani,
1993; Chaichian and Demichev, 1996; Chari and Pressley, 1994; Dobrev, 1993;
Drinfeld, 1986; Faddeev et al., 1996; Jimbo, 1986; Kassel, 1995; Klimyk and
Schmüdigen, 1997; Manin, 1988) that play the role of symmetry groups in quan-
tum gauge theories (Aref’eva and Volovich, 1991; Bernard, 1990; Brzezinski and
Majid, 1993a,b, 1995; Castellani, 1994; Chau and Yamanaka, 1993; Finkelstein,

1 Department of Physics, Brown University, Providence, Rhode Island 02912, USA; e-mail: l mesref@
yahoo.com.
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2000, 2004; Frishman et al., 1993; Hirayama, 1992; Hou and Ma, 1995; Isaev and
Ogievesky, 2001a,b; Isaev and Popowicz, 1993; Mesref, 2002, 2003a,b; Sudbery,
1996a,b,c; Watamura, 1993; Wu and Zhang, 1992) (for a recent review see Ref.
Mesref).

In Mesref (2003c), we have constructed a new map which relates a
q-deformed gauge field defined on the Manin plane x̂ŷ = qŷx̂ and the ordi-
nary gauge field. This map is the q-deformed analogue of the Seiberg–Witten
map (Seiberg and Witten, 1999). We have found this map using the Gersten-
haber star product (Gerstenhaber, 1964) instead of the Groenewold–Moyal star
product (Groenowold, 1946; Moyal, 1949). In the present paper, we extend
our analysis to the general GLq (N )-covariant quantum hyperplane defined by
x̂i x̂j = qx̂j x̂i i < j and to the hybrid plane defined by x̂ŷ − qŷx̂ = hŷ2.

2. q-DEFORMED GAUGE SYMMETRY VERSUS
ORDINARY GAUGE SYMMETRY

To begin we consider the undeformed action

S =
∫

d4x [ψ̄
(
iγ µDµ − m

)
ψ − 1

4
FµνF

µν], (1)

where

Dµψ = (∂µ − iAµ)ψ

Fµν = ∂µAν − ∂νAµ. (2)

S is invariant with respect to infinitesimal gauge transformations:

δλAµ = ∂µλ

δλψ = iλψ

δλψ̄ = −iψ̄λ. (3)

Now let us study the quantum gauge theory on the quantum hyperplane
x̂i x̂j = qx̂j x̂i i < j q ∈ C.

In general, the product of functions on a deformed space is defined via the
Gerstenhaber star product (Gerstenhaber, 1964): Let A be an associative algebra
and let Di,E

i : A → A be a pairwise commuting derivations.
Then the star product of a and b is given by

a � b = µ ◦ eζ
∑

i Di⊗Ei

(a ⊗ b) , (4)

where ζ is a parameter and µ the undeformed product given by

µ (f ⊗ g) = fg. (5)
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On the quantum hyperplane x̂i x̂j = qx̂j x̂i i < j , we can write this star
product as:

f � g = µ ◦ eiη/2(xi (∂/∂xi )⊗xj (∂/∂xj )−xj (∂/∂xj )⊗xi (∂/∂xi )) (f ⊗ g) . (6)

Let us note that the coordinates xi are commuting variables, while the quan-
tum coordinates x̂i are noncommuting variables. The noncommutative algebra on
the quantum hyperplane can be realized on the algebra of the ordinary plane by
using the Gerstenhaber star product.

A straightforward computation gives then the following commutation rela-
tions

xi � xj = eiη/2xixj , xj � xi = e−iη/2xjxi . (7)

Whence

xi � xj = eiηxj � xi, q = eiη. (8)

Thus, we recover the commutation relations for the quantum hyperplane:
x̂i x̂j = qx̂j x̂i .
We can also write the product of functions as

f � g = f ei/2
←−
∂ kθ

kl (x)
−→
∂ l g (9)

where θkl (x) is an antisymmetric matrix depending on the coordinates.
Expanding to first nontrivial order in η, we find

f � g = fg + i

2
ηxixj

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
+ ◦(η2) i < j

= fg + i

2
θ ij (x) ∂if ∂jg + ◦(η2). (10)

The q-deformed infinitesimal gauge transformations are defined by

δ̂̂λÂµ = ∂µλ̂ + i [̂λ, Âµ]� = ∂µλ̂ + îλ � Âµ − iÂµ � λ̂,

δ̂̂λψ̂ = îλ � ψ̂,

δ̂̂λ
̂̄ψ = −î̄ψ � λ̂,

δ̂̂λF̂µν = îλ � F̂µν − iF̂µν � λ̂. (11)

To first order in η, the above formulas for the gauge transformations read

δ̂̂λÂµ = ∂µλ̂ − θρσ (x) ∂ρλ̂ ∂σ Âµ + ◦(η2),

δ̂̂λψ̂ = îλψ̂ − θρσ (x) ∂ρλ̂ ∂σ ψ̂ + ◦(η2),

δ̂̂λ
̂̄ψ = −îλ̂̄ψ + θρσ (x) ∂ρ

̂̄ψ ∂σ λ̂ + ◦(η2),

δ̂̂λF̂µν = −θρσ (x) ∂ρλ̂∂σ F̂µν + ◦(η2). (12)
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To ensure that an ordinary gauge transformation of A by λ is equivalent to
q-deformed gauge transformation of Â by λ̂ we consider the following relation
(Seiberg and Witten, 1999)

Â (A) + δ̂̂λÂ (A) = Â (A + δλA) . (13)

We first work the first order in θ

Â = A + A′ (A)

λ̂ (λ,A) = λ + λ′ (λ,A) . (14)

Expanding in powers of θ we find

A′
µ (A + δλA) − A′

µ (A) − ∂µλ′ = θkl (x) ∂kAµ∂lλ. (15)

The solutions are given by

Âµ = Aµ − 1

2
θρσ (x) (AρFσµ + Aρ∂σAµ), (16)

λ̂ = λ + 1

2
θρσ (x) Aσ∂ρλ

ψ̂ = ψ + 1

2
θρσ (x) Aσ∂ρψ. (17)

The q-deformed curvature F̂µν is given by

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν]�

= ∂µÂν − ∂νÂµ − iÂµ � Âν + iÂν � Âµ. (18)

Finally, we find

F̂µν = Fµν + θρσ (x)
(
FµρFνσ − Aρ∂σFµν

)
−1

2
∂µθρσ (x)(AρFσν + Aρ∂σAν)

+1

2
∂νθ

ρσ (x) (AρFσµ + Aρ∂σAµ). (19)

From this equation we can see the appearance of terms proportional to
∂µθρσ (x). Equation (19) can also be written as

F̂µν = Fµν + fµν + o(η2), (20)

where fµν is the quantum correction linear in η. The quantum analogue of Eq. (1)
is given by

Ŝ =
∫

d4x

[
ˆ̄ψ � (iγ µD̂µ − m)ψ̂ − 1

4
F̂µν � F̂ µν

]
, (21)
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where D̂µψ̂ = ∂µψ̂ − iÂµ � ψ̂ .
We can easily see from this equation that the q-deformed action contains

non-renormalizable vertices of dimension six. Other terms which are proportional
to ∂µθρσ (x) appear.
A gauge fixing term is needed in order to quantize the system. This is done in
the BRST and anti-BRST formalism. As usual, the BRST transformations are
obtained by replacing λ̂ by ĉ and are given by:

ŝÂµ = ∂µĉ − θρσ (x) ∂ρĉ ∂σ Âµ + ◦(η2),

ŝψ̂ = iĉ ψ̂ − θρσ (x) ∂ρĉ ∂σ ψ̂ + ◦(η2),

ŝ̂̄ψ = −î̄ψĉ + θρσ (x) ∂ρ
̂̄ψ ∂σ ĉ + ◦(η2),

ŝF̂µν = −θρσ (x) ∂ρĉ ∂σ F̂µν + ◦(η2),

ŝ ˆ̄c = b, ŝĉ = 0, ŝb̂ = 0, (22)

where ĉ,̂̄c are the quantum Faddeev–Popov ghost and anti-ghost fields, b̂ a scalar
field (sometimes called the Nielson–Lautrup auxiliary field) and ŝ the quantum
BRST operator. The gauge-fixing term is introduced as

Ŝgf +
∫

d4x ŝ
(̂
c̄ �

(α

2
b̂ − ∂µÂµ

))
. (23)

An expansion in η leads to an action corresponding to a highly nonlinear
gauge.

The external field contribution is given by

Ŝext =
∫

d4x (Â∗µ � ŝÂµ + ĉ∗ � ŝĉ), (24)

where Â�, ĉ� are external fields (called antifields in the Batalin–Vilkovisky for-
malism) and play the role of sources for the BRST-variations of the fields Â, ĉ.

The ĉ and̂̄c play quite asymmetric roles, they cannot be related by Hermitian
conjugation. The anti-BRST transformations are given by

̂̄sÂµ = ∂µ̂c̄ − θρσ (x) ∂ρ̂̄c ∂σ Âµ,̂̄sψ̂ = î c̄ψ̂ − θρσ (x) ∂ρ̂̄c ∂σ ψ̂ + ◦(η2),̂̄ŝ̄ψ = −î̄ψ ̂̄c + θρσ (x) ∂ρ
̂̄ψ ∂σ̂̄c + ◦(η2),̂̄sF̂µν = −θρσ (x) ∂ρ̂̄c ∂σ F̂µν + ◦(η2),̂̄ŝc̄ = 0, ̂̄sĉ = −b, ̂̄sb̂ = 0. (25)
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Herê̄s is the quantum anti-BRST operator. The complete tree-level action is
given by: ∑

(Âµ, ĉ,̂̄c, b̂, Â∗
µ, ĉ∗) = Ŝ + Ŝgf + Ŝext. (26)

If we replace the ordinary fields and the ordinary action by their q-deformed
analogues we can construct a q-deformed partition function. This enables us to
study the q-perturbative theory, find the q-deformed n-point correlation functions
and defined the q-deformed analogue of the Slavnov–Taylor identity.

3. (q, h)-DEFORMED GAUGE SYMMETRY VERSUS
ORDINARY GAUGE SYMMETRY

It is well known (Aghamohammadi, 1993; Aghamohammadi et al., 1995;
Demidov et al., 1990; Dubois-Violette and Launer, 1990; Karimipour, 1994, 1995;
Kupershmidt, 1992; Ohn, 1992; Vladimirov, 1993; Zakerzewski, 1991) that the
only quantum groups that preserve nondegenerate bilinear forms are GLqp (2) and
GLhh′ (2). They act on the q-plane (Manin plane) defined by X̂Ŷ = qŶ X̂ and on
the h-plane (Jordanian plane) defined by x̂ŷ − ŷx̂ = hŷ2, respectively.

In this section, we give the form of the star product of functions defined on
the hybrid plane (q, h)-plane defined by x̂ŷ − qŷx̂ = hŷ2. This map can be used
to relate the (q, h)-gauge fields to the ordinary ones.

Let us recall that the Manin plane and the Jordanian plane are related by a
transformation (Aghamohammadi, 1993; Aghamohammadi et al., 1995)(

X̂

Ŷ

)
=

(
1 α

0 1

) (
x̂

ŷ

)
,

(
∂X̂

∂Ŷ

)
=

(
1 0

−α 1

)(
∂x̂

∂ŷ

)
, (27)

where α = h
q−1 .

The star product of functions on the Manin plane is defined by choosing the
pairwise commuting derivations: X ∂

∂X
and Y ∂

∂Y
.

f � g = µ ◦ eiη/2(X(∂/∂X)⊗Y (∂/∂Y )−Y (∂/∂Y )⊗X(∂/∂X)) (f ⊗ g) . (28)

A straightforward computation gives the following commutation relations

X � Y = eiη/2XY, Y � X = e−iη/2YX (29)

Whence

X � Y = eiηY � X, q = eiη. (30)

Thus, we recover the commutation relations for the Manin plane.
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On the hybrid space, we define the star product as

f � g = µ ◦ eiη/2[(x(∂/∂x)+αy(∂/∂x))⊗(y(∂/∂y)−αy(∂/∂x))−(y(∂/∂y)−αy(∂/∂x))⊗(x(∂/∂x)+αy(∂/∂x))] (f ⊗ g) .

(31)

A direct computation gives

x � y = eiη/2xy + (eiη/2 − 1)αy2, y � x = e−iη/2yx + (e−iη/2 − 1)αy2. (32)

Whence

x � y = eiηy � x + (eiη − 1)αy2

= q y � x + h y2. (33)

Thus, we recover the commutation relations for the hybrid plane.
Expanding to first nontrivial order in η and h we find

f � g = f g + i

2
(ηxy − ihy2)

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
. (34)

If we take η = h = 0 we recover the ordinary product of commuting functions
defined on the ordinary two-dimensional plane.

We can also write the star product (defined by Eq. (31) ) as

f � g = f ei/2
←−
∂k �kl (x,y)

−→
∂l g. (35)

Here, the antisymmetric matrix �kl(x, y) = (ηxy − ihy2)εkl with ε12 =
ε21 = 1.

This star product can be used to relate the (q, h)-deformed gauge fields to the
ordinary ones.
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